

Screening Thermal Degradation of E-cigarette Flavorants: A PY-GC-MS Approach

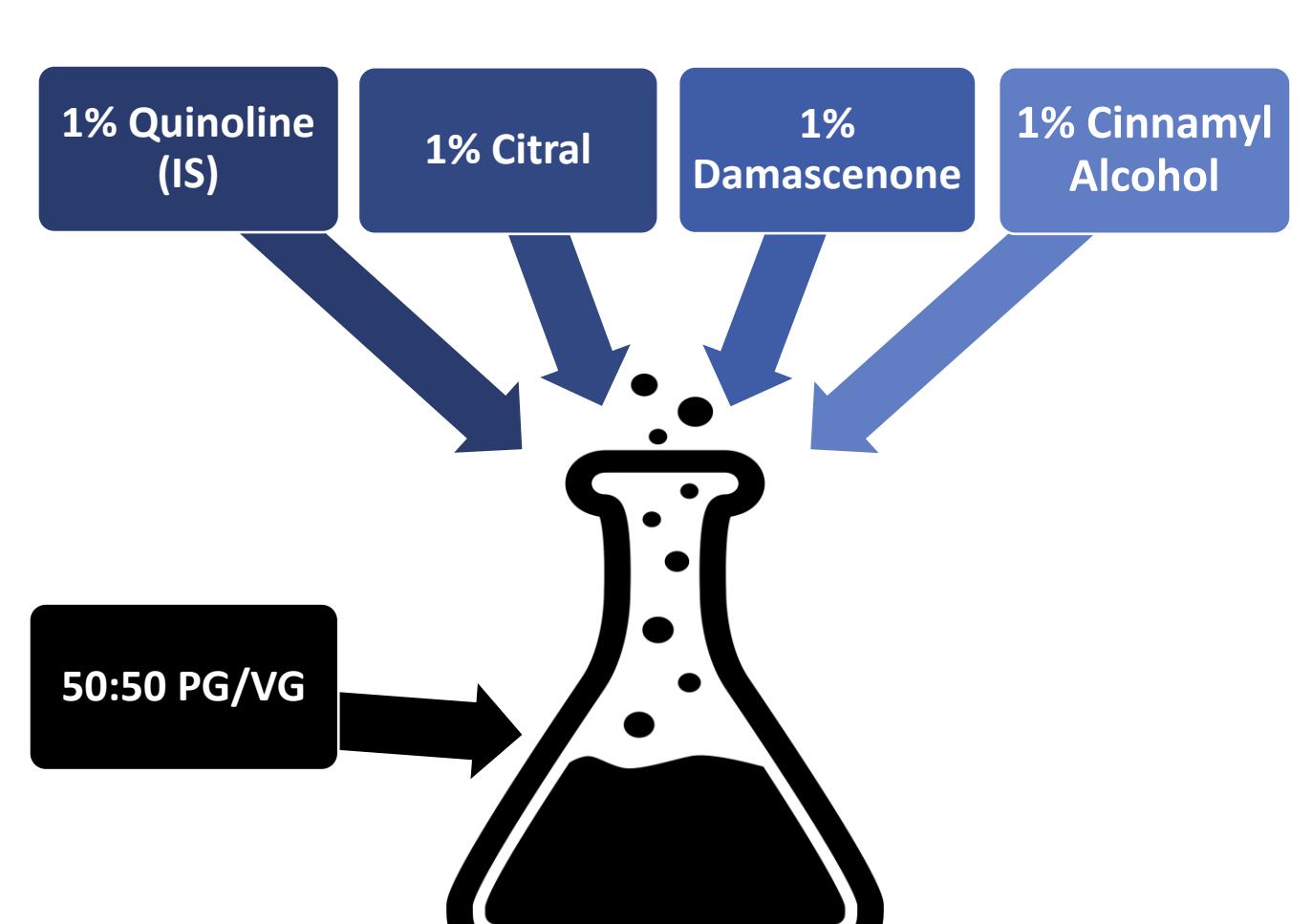
Laura Striepe; Vincent Nip; Bob Moision
Juul Labs Inc.

Introduction

Electronic nicotine delivery systems (ENDS) use heat to transfer flavor chemicals into the aerosol phase. Because the heating process can affect these chemicals, evaluating the toxicological impact of the inhaled aerosol is challenging. Screening a flavorant for its thermal stability prior to inclusion in an e-liquid formulation using thermal conditions that generate a similar degradation profile would facilitate the identification of thermally unstable compounds. This work describes an analytical methodology employing Pyrolysis-Gas Chromatography-Mass Spectrometry (PY-GC-MS) to investigate the thermal behavior of prospective e-liquid flavor compounds under thermal conditions relevant to ENDS.

In order to establish that thermal conditions in the PY-GC-MS generated a similar thermal profile to that of a JUUL2 device, the thermal degradation profile of a custom e-liquid was run in the PY-GC-MS across a range of temperatures and puffed in a JUUL2 device. Based on the consistent formation of key aerosol-related degradation products in both the PY-GC-MS and the JUUL2 system, conservative pyrolysis conditions were determined for subsequent compound screening.

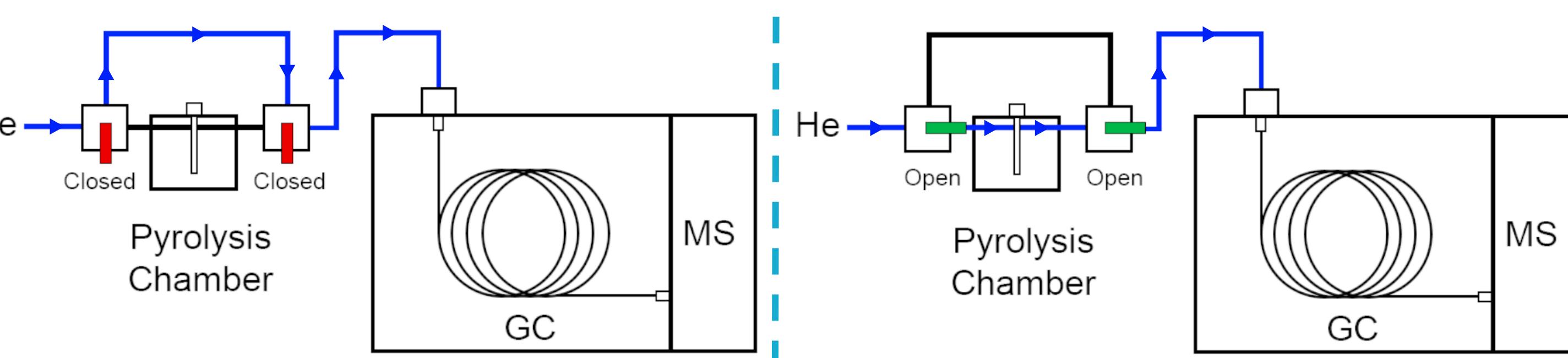
Methodology


GC-MS Settings

Parameter	Description
Instrument	Agilent 7890B GC System 5977 MS Detector
Injection Volume	1 μ L
Injection Mode	Split (50:1)
Inlet Temperature	260°C
GC Column	Restek Stabilwax MS (30 m x 250 μ m x 0.25 μ m)
Flow Rate	1 mL/min
Oven Program	Initial 40°C (hold 1 min) Ramp 5°C/min to 110°C Ramp 10°C/min to 250 (hold 10 min)
Source Temperature	230°C
Transfer Line Temperature	250°C
Quadrupole Temperature	150°C
Method Run Time	40 min

Pyrolyzer Settings

Parameter	Description
Instrument	CDS Pyroprobe 6200
Chamber Top Temperature	180°C
Chamber Bottom Temperature	180°C
Pyrolysis Temperature	300°C
Chamber Hold Time	30 s
Valve Oven Temperature	300°C
Transfer Line Temperature	300°C


Pyrolysis Heater Calibration

Schematic 1. Custom e-liquid mix containing 50:50 PG/VG, 1% citral, 1% damascenone, 1% cinnamyl alcohol and 1% quinoline (IS).

Results

"PyLock" Method vs. Normal Pyrolysis Method

Schematic 2. The initial, "locked" state (left): The pyrolysis chamber is sealed off allowing the sample to heat and pyrolyze under a static helium atmosphere. The "open" state (right): the valve opens, restoring helium flow and sweeping the resulting pyrolyzates from the chamber into the GC-MS for analysis.

In the standard pyrolysis configuration, a sample is placed into the pyrolysis chamber and rapidly heated to a set temperature for a specific time. During the heating process, a constant flow of helium through the pyrolysis chamber sweeps compounds into the GC-MS for analysis. In initial experiments using this standard pyrolysis approach, little or no temperature dependence was observed in the formation of thermal degradants, despite increasing the pyrolyzer temperature to over 500°C. This was attributed to the helium flow through the pyrolysis chamber, which removed volatile compounds from the heated region before they could be adequately exposed to the final pyrolysis temperature. To rectify this issue, the helium flow was diverted around the pyrolysis chamber during heating. This modified approach, or "pylock" method, allows the sample to be heated to the target temperature under a static atmosphere, enabling the flavorant compounds to pyrolyze effectively. Once the desired pyrolysis time is complete, the helium flow is restored, and the resulting degradation products enter the GC inlet for analysis. This refined methodology ensures that the observed compounds are true pyrolyzates, providing a more accurate representation of the thermal decomposition process.

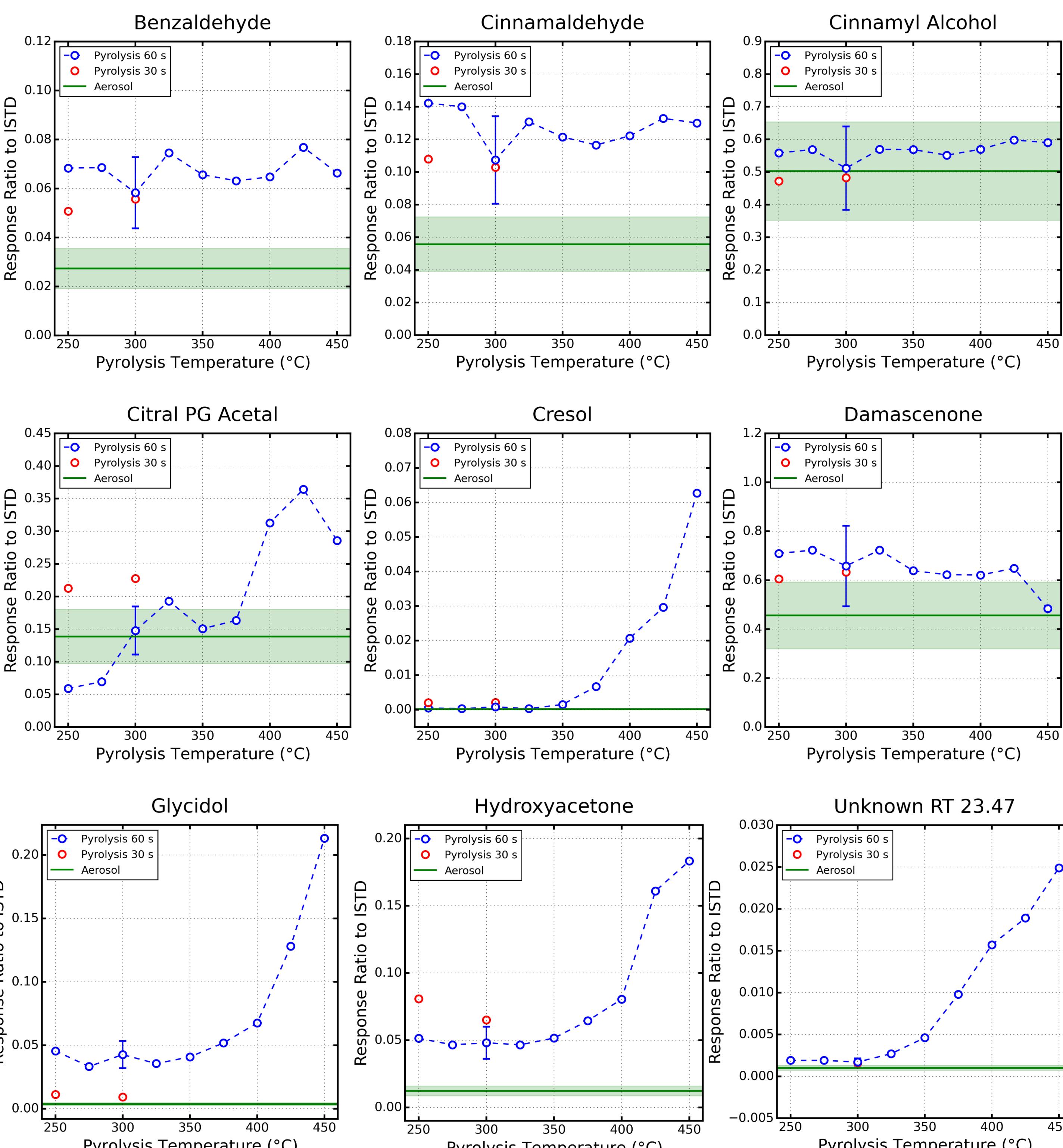


Figure 1. Py-GC-MS response ratios for nine analytes, comparing pyrolysis times of 30 s and 60 s across various temperatures. Aerosol results are shown for reference with $\pm 30\%$ uncertainty.

Flavor Compound	CAS #	Purity (%)	Peak Area > 0.01% ¹		Peak Area > 0.1% ²	
			Intact Transfer %	Number of Chemicals Identified	Intact Transfer %	Number of Chemicals Identified
1-Decanol	112-30-1	99.7	94.7	18	95.1	5
1-Heptanol	111-70-6	99.9	97.3	25	97.8	5
1-Nonanol	143-08-8	99.3	88.9	11	89.1	5
1-Octanol	111-87-5	99.2	91.1	40	91.6	19
2-Isopropyl-4-methylthiazole	15679-13-7	99.8	91.1	41	91.8	12
2-Methyl-4-propyl-1,3-oxathiane	67715-80-4	99.3	92.8	36	93.4	17
2-Octanol	123-96-6	99.5	95.2	10	95.2	7
2-Pentanone	107-87-9	99.9	97.2	25	97.6	10
5,6,7,8-Tetrahydroquinoxaline	34413-35-9	99.3	94.8	24	95.5	7
6-Methyl-5-hepten-2-ol	1569-60-4	99.2	86.5	72	88.0	16
Allyl cyclohexanepropionate	2705-87-5	99.3	92.1	20	92.6	10
Benzyl isovalerate	103-38-8	99.8	85.9	23	86.3	15
Cinnamyl acetate	103-54-8	99.4	83.6	25	83.9	12
cis-3-Hexenyl 3-methylbutanoate	35154-45-1	99.7	97.4	30	98.1	5
Diphenyl ether	101-84-8	99.9	98.6	6	98.8	3
Ethyl (2E,4Z)-decadienoate	3025-30-7	95.9	80.7	41	81.0	13
Mango furanone	14400-67-0	99.3	83.9	41	84.5	15
Massoia lactone	54814-64-1	96.3	59.3	67	59.9	43
Succinic acid	110-15-6	99.4	0.0	5	0.0	5
trans-2-Hexen-1-ol	928-95-0	98.7	74.3	57	75.3	16

Table 1. Py-GC-MS results for flavor compounds. This table presents the name, CAS #, and purity for each compound. Key results include the Calculated Intact Transfer %, which indicates thermal stability, and the # of compounds ID'd, which represents the number of identified degradation products, reaction products or impurities from pyrolysis.

¹Analysis includes all peak areas that are 0.01% or greater of the main component's peak area.

²Analysis includes all peak areas that are 0.1% or greater of the main component's peak area.

Conclusions

This work establishes a robust PY-GC-MS methodology to screen flavor compound thermal stability, with conditions selected to produce a degradation profile similar to a JUUL2 device. This was achieved at 300°C with a 30-second hold time. A key innovation was the "pylock" method, developed to ensure proper thermal degradation by preventing the premature transfer of volatile compounds to the GC.

Screening of 20 compounds revealed a wide range of thermal stability, with intact transfer percentages from 0.0% to 98.8% and the number of identified degradation products ranging from 3 to 72. While most compounds showed high stability, the method effectively identified those with lower thermal stability, such as massoia lactone, and compounds that underwent complete degradation, such as succinic acid.

The study also highlights the role of analytical sensitivity; the 0.01% peak area threshold provided a more detailed profile of degradation products, while the 0.1% threshold was a valid option for general assessment due to similar intact transfer percentages. In conclusion, this methodology is an effective and repeatable tool for the rapid screening of e-liquid components, informing formulation decisions and aiding in the development of products with reduced toxicological risk.

References:

1. Yu, C.; Liang, M.; Dai, S.-Y.; Cheng, H.-J.; Ma, L.; Lai, F.; Liu, X.-M.; Li, W.-G. Thermal stability and pathways for the oxidation of four 3-phenyl-2-propene compounds. *RSC Adv.* 2021, 11, 32654–32670.
2. Oldham, M. J.; Jeong, L.; Gillman, I. G. An Approach to Flavor Chemical Thermal Degradation Analysis. *Toxics* 2024, 12, 16.